51 research outputs found

    Asymptotic distribution of fixed points of pattern-avoiding involutions

    Full text link
    For a variety of pattern-avoiding classes, we describe the limiting distribution for the number of fixed points for involutions chosen uniformly at random from that class. In particular we consider monotone patterns of arbitrary length as well as all patterns of length 3. For monotone patterns we utilize the connection with standard Young tableaux with at most kk rows and involutions avoiding a monotone pattern of length kk. For every pattern of length 3 we give the bivariate generating function with respect to fixed points for the involutions that avoid that pattern, and where applicable apply tools from analytic combinatorics to extract information about the limiting distribution from the generating function. Many well-known distributions appear.Comment: 16 page

    Regenerative tree growth: structural results and convergence

    Full text link
    We introduce regenerative tree growth processes as consistent families of random trees with n labelled leaves, n>=1, with a regenerative property at branch points. This framework includes growth processes for exchangeably labelled Markov branching trees, as well as non-exchangeable models such as the alpha-theta model, the alpha-gamma model and all restricted exchangeable models previously studied. Our main structural result is a representation of the growth rule by a sigma-finite dislocation measure kappa on the set of partitions of the natural numbers extending Bertoin's notion of exchangeable dislocation measures from the setting of homogeneous fragmentations. We use this representation to establish necessary and sufficient conditions on the growth rule under which we can apply results by Haas and Miermont for unlabelled and not necessarily consistent trees to establish self-similar random trees and residual mass processes as scaling limits. While previous studies exploited some form of exchangeability, our scaling limit results here only require a regularity condition on the convergence of asymptotic frequencies under kappa, in addition to a regular variation condition.Comment: 23 pages, new title, restructured, presentation improve

    Approximating Solutions to Differential Equations via Fixed Point Theory

    Get PDF
    In the study of differential equations there are two fundamental questions: is there a solution? and what is it? One of the most elegant ways to prove that an equation has a solution is to pose it as a fixed point problem, that is, to find a function f such that x is a solution if and only if f (x) = x. Results from fixed point theory can then be employed to show that f has a fixed point. However, the results of fixed point theory are often nonconstructive: they guarantee that a fixed point exists but do not help in finding the fixed point. Thus these methods tend to answer the first question, but not the second. One such result is Schauder’s fixed point theorem. This theorem is broadly applicable in proving the existence of solutions to differential equations, including the Navier-Stokes equations under certain conditions. Recently a semi-constructive proof of Schauder’s theorem was developed in Rizzolo and Su (2007). In this thesis we go through the construction in detail and show how it can be used to search for multiple solutions. We then apply the method to a selection of differential equations

    The free path in a high velocity random flight process associated to a Lorentz gas in an external field

    Full text link
    We investigate the asymptotic behavior of the free path of a variable density random flight model in an external field as the initial velocity of the particle goes to infinity. The random flight models we study arise naturally as the Boltzmann-Grad limit of a random Lorentz gas in the presence of an external field. By analyzing the time duration of the free path, we obtain exact forms for the asymptotic mean and variance of the free path in terms of the external field and the density of scatterers. As a consequence, we obtain a diffusion approximation for the joint process of the particle observed at reflection times and the amount of time spent in free flight.Comment: 30 page
    • …
    corecore